Sponsored By

Dust Bowl would devastate today's crops, study findsDust Bowl would devastate today's crops, study finds

New study finds a Dust Bowl-scale drought would be comparably destructive for U.S. agriculture today, despite technological advances.

January 5, 2017

3 Min Read
Dust Bowl would devastate today's crops, study finds
Courtesy of USDA / Wikimedia Commons

A drought on the scale of the legendary Dust Bowl crisis of the 1930s would have similarly destructive effects on U.S. agriculture today, despite technological and agricultural advances, according to a new study from the University of Chicago.

Additionally, warming temperatures could lead to crop losses at the scale of the Dust Bowl, even in normal precipitation years by the mid-21st century, the researchers concluded.

The study, published Dec. 12 in Nature Plants, simulated the effect of extreme weather from the Dust Bowl era on today’s corn, soybean and wheat crops. Authors Michael Glotter and Joshua Elliott of the Center for Robust Decision Making on Climate & Energy Policy at the University of Chicago's Computation Institute, examined whether modern agricultural innovations would protect against history repeating itself under similar conditions.

“We expected to find the system much more resilient because 30% of production is now irrigated in the U.S., and because we’ve abandoned corn production in more severely drought-stricken places such as Oklahoma and west Texas,” said Elliott, a fellow and research scientist at the center and the Computation Institute. “We found the opposite: The system was just as sensitive to drought and heat as it was in the 1930s.”

The severe damage of the Dust Bowl was actually caused by three distinct droughts in quick succession, occurring in 1930-31, 1933-34 and 1936. From 1933 to 1939, wheat yields declined by double-digit percentages, reaching a peak loss of 32% in 1933. The economic and societal consequences were vast, eroding land value throughout the Great Plains states and displacing millions of people.

In the eight decades since that crisis, agricultural practices have changed dramatically, but many technological and geographical shifts were intended to optimize average yield instead of resilience to severe weather, leaving many staple crops vulnerable to seasons of unusually low precipitation and/or high temperatures.

As a result, when the researchers simulated the effects of the 1936 drought upon today’s agriculture, they still observed roughly 40% losses in corn and soy yield, while wheat crops declined by 30%. The harm would be 50% worse than the 2012 drought, which caused nearly $100 billion of damage to the U.S. economy.

“We knew a Dust Bowl-type drought would be devastating even for modern agriculture, but we expected technological advancements to mitigate those damages much more than our results suggested,” said Glotter, a University of Chicago graduate student in geophysical sciences. “Technology has evolved to make yields as high as possible in normal years, but as extreme events become more frequent and severe, we may have to reframe how we breed crops and select for variance and resilience, not just for average yield.”

Strategies to avoid these agricultural crises and their severe ripple effects for global food security could include switching to more drought-resistant crops such as sorghum, moving wheat, soybean and corn agriculture to northern U.S. states, or developing new strains of crops with higher heat tolerance. None of these preventative efforts are cheap, and they may be impossible for developing countries to implement, the researchers said.

“Reducing emissions will be critical to avoiding some of the worst damages from extreme weather in a changing climate,” Glotter said. “Even in the best case scenarios, climate change is expected to alter the severity and frequency of future droughts. Understanding the interactions of weather extremes and a changing agricultural system is therefore critical to effectively prepare for and respond to the next Dust Bowl.”

Subscribe to Our Newsletters
Feedstuffs is the news source for animal agriculture

You May Also Like