'Super yeast' has ability to boost biofuel economics

Researchers find way to nearly double efficiency with which yeast strain converts plant sugars to biofuels.

Scientists at the University of Wisconsin-Madison and the Great Lakes Bioenergy Research Center (GLBRC) have found a way to nearly double the efficiency with which a commonly used industrial yeast strain converts plant sugars to biofuels. The newly engineered "super yeast" could boost the economics of making ethanol, specialty biofuels and bioproducts, according to the news release.

Alhough Saccharomyces cerevisiae has been the yeast of choice for bakers and brewers for centuries, it poses a unique challenge to researchers using it to make biofuels from cellulosic biomass such as grasses, woods or the non-food portion of plants. The microbe is highly adept at converting a plant's glucose to biofuels but is otherwise a "picky eater," ignoring the plant's xylose — a five-carbon sugar that can make up nearly half of all available plant sugars.

"For cellulosic biofuels to become economically feasible, microbes need to be able to convert all of a plant's sugars, including xylose, into fuel," said Trey Sato, lead researcher on the GLBRC study and a University of Wisconsin-Madison associate scientist.

In a study published Oct. 14 in the journal PLOS Genetics, Sato and his GLBRC collaborators described isolating specific genetic mutations that allow S. cerevisiae to convert xylose into ethanol — a finding that could transform xylose from a waste product into a source of fuel. To uncover these genetic mutations, the researchers had to untangle millions of years of evolution, teasing out what led S. cerevisiae to become so selective in its eating habits in the first place.

First, the researchers gave the yeast a choice akin to eating carrots for dinner or nothing at all, surrounding S. cerevisiae with xylose until it either re-evaluated its distaste for xylose or died. It took 10 months and hundreds of generations of "directed evolution" for Sato and his colleagues, including University of Wisconsin-Madison co-corresponding authors Robert Landick, professor of biochemistry, and Audrey Gasch, professor of genetics, to create a strain of S. cerevisiae that could ferment xylose.

Once the researchers had isolated the super yeast they named GLBRCY128, they also needed to understand exactly how the evolution had occurred in order to replicate it, the news release noted. Gasch compared the Y128 genome to the original strain, combing through the approximately 5,200 genes of each to find four mutations responsible for the adapted behavior. To verify their finding, the researchers manually deleted these genetic mutations from the parent strain, producing the same result.

Sato said this work could enable a wide variety of biofuel research going forward. With the technique for making Y128 published, researchers are free to make it themselves for the purposes of applying it to new biomass pretreatment technologies or to different plant materials.

"Scientists won't need to adapt their research to the process that we're doing here; they can just take our technology and make their own strain," Sato said.

Future research may also focus on the super yeast's potentially powerful role in creating specialty biofuels and bioproducts.

"We want to take this strain and make higher-order molecules that can be further converted into jet fuels or something like isobutanol, lipids or diesel fuel," Sato explained. "If we know how to better metabolize carbon, including xylose, anybody, in theory, should be able to rewire or change metabolic pathways to produce a variety of biofuel products."

Hide comments

Comments

  • Allowed HTML tags: <em> <strong> <blockquote> <br> <p>

Plain text

  • No HTML tags allowed.
  • Web page addresses and e-mail addresses turn into links automatically.
  • Lines and paragraphs break automatically.
Publish